

# Shaking Out Shells With SSHamble



HDMOORE | AUGUST 9, 2025

with contributions from Rob King

## **Agenda**

#### A 20-minute follow-up & extension of our DC 32 research[1]

- → A fast overview of the SSH protocol and ecosystem
- $\rightarrow$  A recap of major SSH exposures since last year
- → New research, vulnerabilities, and exposure stats
- → Updates to our open source tooling!

1. https://www.runzero.com/blog/sshamble-unexpected-exposures-in-the-secure-shell/



# SSH pre-authentication information exposure



| Platform            | Version | SSH banner            | v4<br>tcp.win | v4<br>MSS | MSS<br>Multiplier | v4<br>Window<br>Scale |
|---------------------|---------|-----------------------|---------------|-----------|-------------------|-----------------------|
| CentOS Linux        | 7.1     | SSH-2.0-OpenSSH_6.6.1 | 14480         | 1460      | 10                | 7                     |
| CentOS Linux        | 7.2     | 0011 0 0 0 0011 4 4 3 | 28960         | 1460      | 20                | 7                     |
| CentOS Linux        | 7.3     | SSH-2.0-OpenSSH_6.6.1 | 28960         | 1460      | 20                | 7                     |
| CentOS Linux        | 7.4     | SSH-2.0-OpenSSH_7.4   | 28960         | 1460      | 20                | 7                     |
| CentOS Linux        | 7.5     |                       | 28960         | 1460      | 20                | 7                     |
| Oracle Linux Server | 7.7     |                       | 28960         | 1460      | 20                | 7                     |
| CentOS Linux        | 7.9     |                       | 28960         | 1460      | 20                | 7                     |
| Oracle Linux Server | 7.9     |                       | 28960         | 1460      | 20                | 7                     |
| Scientific Linux    | 7.9     |                       | 28960         | 1460      | 20                | 7                     |
| CentOS Linux        | 8.0     | 0011 2 0 00011 7 0    | 28960         | 1460      | 20                | 7                     |
| Oracle Linux Server | 8.0     | SSH-2.0-OpenSSH_7.8   | 28960         | 1460      | 20                | 7                     |



Incorrect passcode. Please try again.
Duo two-factor login for root

Enter a passcode or select one of the following options:

1. Duo Push to +XX XXXXX X5721

2. SMS passcodes to +XX XXXXX X5721 (next code starts with: 1)

Passcode or option (1-2):2

# **SSH** is everywhere

- Second-most common remote admin service behind HTTP
- Enabled by default in clouds
- Part of every major OS
- Embedded & servers
- → Even mobile!





# SSH is mostly\* OpenSSH & Dropbear

| OpenSSH                               | 14,876,142 |
|---------------------------------------|------------|
| Dropbear sshd                         | 678,520    |
| Cisco IOS                             | 148,007    |
| Mikrotik                              | 125,545    |
| Linksys WRT45G modified dropbear sshd | 34,694     |
| lancom sshd                           | 29,559     |
| HP Integrated Lights-Out mpSSH        | 6,145      |
| SCS sshd                              | 6,085      |
| ZyXEL ZyWALL sshd                     | 5,293      |
| WeOnlyDo sshd                         | 4,384      |
| DrayTek Vigor 2820n ADSL router sshd  | 1,462      |
| Cisco/3Com IPSSHd                     | 1,388      |

#### **Not-OpenSSH/Dropbear are important**

#### Firewall, networking, & storage

→ Cisco, NetScreen, Adtran, ComWare, Lancom

#### **OT/ICS** equipment

→ Siemens, NetPower, Mocana, CradlePoint, Digi

#### Sensitive applications

- $\rightarrow$  MOVEIT, CrushFTP, GlobalScape, JSCAPE
- → BitVis, GoAnywhere, ConfD (Erlang)
- → Gerrit, Forgejo, Gitlab



# SSH provides transport & authentication

# Version exchange & kex init in the clear

- → Version: SSH-2.0 OpenSSH-9.8p1 deb13u3
- → Ciphers, MACs,
   Compressions, Languages,
   etc

# **Key exchange to negotiate secure transport**

- → Diffie-Hellman & friends pinned with server host key(s)
- → Algorithm picked by kex init agreement

# Authentication using one or more methods

- → Passwords, public keys, kerberos, & more
- → PK uses the session ID for proof signing

Similar to TLS

## **SSH** authentication



# Pubkey enables pre-auth user & key confirmation

### **Servers**

A list of IP addresses or hostnames running SSH.

#### **Scanners**

- nmap
- zmap
- masscan

#### **Databases**

- Shodan
- Censys
- Fofa.info

# **Public Keys**

A list of public keys possibly linked to the target.







## **Usernames**

A list of usernames likely used by the target.

#### **Defaults**

- root
- ec2-user
- ubuntu

#### **Specific**

- Public key "comments"
- Common handles
- Email prefixes

# SSH post-authentication is multiplexed

- → Interactive shells
- → Command execution
- → File transfer (SCP, SFTP)
- → TCP forwarding
- → Unix socket forwarding
- → X11 display forwarding
- → Agent forwarding



# SSH is effectively the other secure transport

# An alternative to TLS, but not exactly the same

- → Server key management can be, but usually isn't CA-based
- → Authentication is a core stage of the protocol
- Multiplexer & session commands are unique
- → SSH uses the <u>first</u> algorithm sent by the client & supported by the server



# Compliance schemes gloss over SSH

- → Vendors point to strong cipher/mac + authentication similar to TLS
- → SSH specifics are often missing, assume best practices
- Key management is the biggest gap

# Recent Vulnerabilities & Exposures

# **Terrapin Attack**

# **Breaking SSH Channel Integrity by Sequence Number Manipulation**

#### **Fabian Bäumer**

Research Assistant, Ruhr University Bochum

CVE-2023-48795



### XZ Utils backdoor

# A multi-year campaign started in 2021 and triggered in 2024

- → "Jia Tan" persona was likely the product of a state actor
- → Nearly-perfect Nobody-But-Us backdoor in SSH
- → Backdoor targeted SSH via systemd patches
- → Limited to Debian/RHEL-based distros

# Caught at the last possible moment by Andres Freund

- → Noticed that sshd was using more CPU than it should
- → Backdoor made it into rolling releases only





# RegreSSHion

#### Incredible work by the Qualys Threat Research Unit

- → Regression of a signal re-entrance vulnerability
- → Unauthenticated remote root code execution
- → Tough to exploit due to ASLR & timing

CVE-2024-6387



## Related issue discovered by Solar Designer

- → Specific to Red Hat builds of OpenSSH
- → Limited to the non-root privsep user

CVE-2024-6409

The patch was hidden in the PerSourcePenalties feature, released a month prior to the disclosure.

## **MOVEit & IPWorks SSH**

# **Another MOVEit vulnerability, but this time in SSH**

- → watchTowr Labs reversed the MOVEit patch for CVE-2024-3094
- → The attacker's unauthenticated public key blob is opened as a file
- → File path supports UNC and was used for authentication
- → Root cause was the third-party IPWorks library
- → Threaded a dozen needles to bypass auth



CVE-2024-5806

# **OpenSSH MiTM & DoS**

#### More amazing work by the Qualys Threat Research Unit

- → Successful machine-in-the-middle (MitM) against OpenSSH clients
- → Abuses VerifyHostKeyDNS error handling with memory exhaustion
- → Pre-auth denial of service via "ping" messages



CVE-2025-26465

CVE-2025-26466

# **Go SSH Authentication Bypass**

#### Platform.sh team identified a footgun in Go's x/crypto/ssh

- → Public key handler is called for each key presented by the attacker
- → Buggy applications can use the wrong key for authentication
- → Best documented case is the NetApp Telegraf Agent
- → Footgun partially fixed via Go x/crypto/ssh update



CVE-2024-45337

## Cisco Unified CM hardcoded root password

#### It's 2025 and backdoor creds still happen

- $\rightarrow$  A development slip-up that affected a narrow set of versions (15.0.1.13010-1 to 15.0.1.13017-1)
- → A great example of how DenyUser or PublicKey-only authentication could help



CVE-2025-20309

# **Erlang OTP SSH Remote Code Execution**

Fabian Bäumer, Marcus Brinkmann, Marcel Maehren, & Jörg Schwenk (Ruhr University Bochum)

- → State machine bug, the fix limits acceptable message types by session state
- → Exploitable after the version and kex init, even before encryption starts, easy one-liner exploit
- → Direct remote evaluation of Erlang code

CVE-2025-32433



#### **SSHamble**

- → A research tool for SSH implementations
- → Quickly scans and gathers detailed data
- → Interesting attacks against authentication
- → Post-session authentication attacks
- → Pre-authentication state transitions
- → Post-session enumeration
- $\rightarrow$  Easy timing analysis



https://SSHamble.com

# **Erlang OTP SSH Remote Code Execution**

#### Why did we miss this with SSHamble?

→ Erlang doesn't reply to the channel open or exec in this state, causing SSHamble to timeout. Unfortunately neither do a lot of non-vulnerable things, so tests have to be Erlang/ConfD specific.

CVE-2025-32433

#### **Real-world impact**

- → Few instances of Erlang-SSHD in the wild
- → Cisco NETCONF ConfD is based on Erlang
- → Direct RCE on Cisco NSO / ConfD systems
- → Not port 22, check 830, 2022, & 2024
- → Was left unpatched for over a month
- → Patch it yourself with `ssh:stop().`



23:00:38.907100 < 0.106.0 > Server Channel info returned: {noreply,"#state{}"}

# Recap of IPv4 exposure from August 2024

#### A lot of broken SSH on the internet

- → Tons of tarpits & buggy systems
- → ~14 million reach ssh-auth state
- → ~110k resulted in a session
- → ~9 unique vulnerabilities

Scope limited to port 22



# SSHamble trophy case (2024)

| Product                     | Impact                                           |  |
|-----------------------------|--------------------------------------------------|--|
| Ruckus Wireless APs         | Unauthenticated root command execution           |  |
| Digi TransPort Gateways     | Unauthenticated remote CLI access as SUPER       |  |
| Panasonic Ethernet Switches | Unauthenticated remote CLI access as admin       |  |
| Realtek ADSL Gateways       | Unauthenticated remote CLI access as admin       |  |
| Soft Serve                  | Authenticated remote code execution              |  |
| GOGS                        | Authenticated remote command execution           |  |
| OpenSSH for Windows         | Unauthenticated OOB memory leak / comparison bug |  |
| ION Networks Service AP     | Unauthenticated TCP forwarding                   |  |
| Multiple Products           | Unlimited public key testing                     |  |

# **12 Months Later**

# Total SSH exposure is flat since 2018





## Low uptake of PerSourcePenalties

#### **OpenSSH 9.8 added default rate limiting**

- → Exploitation of future vulnerabilities is more difficult
- → Slows down all sorts of automated SSH testing
- → Low adoption for newer versions

Of ~20m exposed OpenSSH servers, less than 500k are running 9.8 or newer. Stats are higher on corporate networks, but modern OpenSSH adoption is a long road.

Dropbear doesn't have anything similar and still supports high-speed tests (10k/sec/conn for pubkeys).





# IPv4 SSH ports (SSHamble vs SHODAN)

SSHamble vs Shodan (August 2025)



# Changes in SSH exposure (August 2024 vs 2025)

#### **Comparison using just port 22**

- → More valid SSH servers, fewer tarpits
- → ~14.2 million reach auth state
- → ~107k resulted in a session

#### After introducing additional ports

- → Expanded to top ~110 SSH ports
- → ~16.3 million reach auth state
- → ~20k more shells
- → New bugs!



# Little improvement overall

#### Advisories and publication didn't dent exposure

- → Even more vulnerable Digi routers with auth bypass
- → Still thousands of unpatched Ruckus APs
- → Dropbear still allows unlimited pubkeys
- → Even more no-auth shells on odd ports

#### Open sessions (~130k) vs real shells (~50k)

- → ~10k are obviously medium-interaction systems
- → ~17k are SonicWall firewalls with secondary auth
- → ~14k are new vulns in carrier ethernet switches
- → ~5k are quasi-sessions (limited features)





# New bugs pending disclosure (2025)

| Product                            | Impact                                                         |
|------------------------------------|----------------------------------------------------------------|
| <carrier switch=""></carrier>      | Unauthenticated shell & NETCONF via auth-method == "\x00"      |
| <pbx></pbx>                        | Post-SSH failed login drops to an open ssh/telnet client shell |
| <cloud bastion="" host=""></cloud> | ISP management shell via pubkey-any (contractually mandated)   |

#### **Bonus vulnerabilities**

#### Free creds with Responder & Flamingo

- Listen on multiple protocols and try to negotiate authentication with inbound clients
- Recommend using Responder first and then running Flamingo on the remaining ports (automatic)
- Why do this? Free credentials and early warning of investigation by your targets
- A background tcpdump can't hurt

```
$ ./Responder.py
SMB Administrator::BIDCON:...
SMB watchguard_sso::BANKOFNNN:...
SMB WGAdmin::BIGMFG:a412...
SMB _SSOWatchguard::GNRTRANSP:...
SMB PA_Agent::MYAIRNATIONAL:...
```

https://github.com/atredispartners/flamingo/

#### New features in SSHamble!

- → Automatic badkeys.info blocklist lookups
- → Additional authentication bypass methods
- → Wider algorithm and host key support
- → Experimental blind exec vuln checks
- → Target filtering with --skip-versions
- → Updated go x/crypto & crypto/ forks

https://SSHamble.com



SSHamble v3 == v0.3.x

# **BadKeys.info**

Hanno Böck's amazing key analyzer & database

- → Includes a scanner for common protocols (SSH, TLS, etc)
- → Dynamic analysis for cryptographic issues
- → Massive lookup database for known keys
- → Includes some sensitive/leaked key sets
- → Fast lookups via binary search



https://BadKeys.Info

# **Built-in checks**

| bypass    | auth-none                   | skip-auth                   | auth-success        |  |
|-----------|-----------------------------|-----------------------------|---------------------|--|
|           | method-null                 | method-empty                | skip-pubkey-any     |  |
| publickey | pubkey-any                  | pubkey-any-half             | user-key            |  |
|           | half-auth-limit             | pubkey-hunt                 |                     |  |
| password  | pass-any                    | pass-empty                  | pass-null           |  |
|           | pass-user pass-change-empty |                             | pass-change-null    |  |
| keyboard  | kbd-any                     | kbd-empty                   | kbd-null            |  |
|           | kbd-user                    | _                           | _                   |  |
| gss-api   | gss-any                     | _                           | _                   |  |
| userenum  | timing-none                 | timing-pass                 | timing-pubkey       |  |
| vulns     | vuln-tcp-forward            | vuln-generic-env            | vuln-softserve-env  |  |
|           | vuln-gogs-env               | vuln-ruckus-password-escape | vuln-exec-skip-auth |  |
|           | badkeys-blocklist           | _                           | _                   |  |

## **Getting started**

```
Start a network scan
$ sshamble scan -o results.json 192.168.0.0/24
Analyze the results
$ sshamble analyze -o output results.json
Specify ports, usernames, passwords, public keys, private keys, and more
$ sshamble scan -o results.json 192.168.0.0/24 \
   --users root,admin,4DGift,jenkins \
   --password-file copilot.txt \
   -p 22,2222 \
   --pubkey-hunt-file admin-keys.pub \
Open an interactive shell for sessions
$ sshamble scan -o results.json 192.168.0.0/24 \
   --interact first --interact-auto "pty,env LD DEBUG=all,shell"
```

#### The interactive shell

sshamble>

```
Enter the sshamble shell with `^E`. Commands:
   exit
                             - Exit the session (aliases 'quit' or '.')
                             - Show this help text (alias '?')
   help
            a=1 b=2
                             - Set the specified environment variables (-w for wait mode)
    env
                             - Request a pty on the remote session (-w for wait mode)
   pty
   shell
                             - Request the default shell on the session
            cmd arg1 arg2
                             - Request non-interactive command on the session
    exec
            sig1 sig2
                             - Send one or more signals to the subprocess
   signal
            host port
                             - Make a test connection to a TCP host & port
   tcp
   unix
            path
                             - Make a test connection to a Unix stream socket
            milliseconds
   break
                             - Send a 'break' request to the service
            cmd arg1 arg2
                             - Send a custom SSH request to the service
   req
                             - Request a specific subsystem
            subsystem
   sub
                            - Send string to the session
            string
   send
            string
                             - Send string to the session one byte at a time
    sendb
```

#### Don't want to use a new tool?

- → We're porting SSHamble features to Nuclei
- $\rightarrow$  Soon, new SSH templates!

https://github.com/projectdiscovery/nuclei

# Thank you!

runZero.com

research@runZero.com

SSHamble.com









#### References 1/2

- → https://boehs.org/node/everything-i-know-about-the-xz-backdoor
- → https://github.com/ssh-mitm/ssh-mitm
- → https://ssh-comparison.quendi.de/comparison/hostkey.html
- → https://words.filippo.io/ssh-whoami-filippo-io/
- → https://github.com/badkeys/badkeys
- → Metasploit: ssh\_identify\_pubkeys (2012)
- → regreSSHion: https://www.qualys.com/2024/07/01/cve-2024-6387/regresshion.txt
- → Terrapin: https://terrapin-attack.com/
- → https://labs.watchtowr.com/auth-bypass-in-un-limited-scenarios-progress-moveit-transfer-cve-2024-5806/
- $\rightarrow$  http://thetarpit.org/2018/shithub-2018-06
- → https://helda.helsinki.fi/server/api/core/bitstreams/471f0ffe-2626-4d12-8725-2147232d849f/content
- → https://github.blog/2023-03-23-we-updated-our-rsa-ssh-host-key/
- $\rightarrow \quad \text{https://www.securityweek.com/user-id-misconfiguration-can-expose-credentials-palo-alto-networks/}$

#### References 2/2

- → Kannisto, J., Harju, J. (2017). The Time Will Tell on You: Exploring Information Leaks in SSH Public Key Authentication. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds) Network and System Security. NSS 2017. Lecture Notes in Computer Science(), vol 10394. Springer, Cham. https://doi.org/10.1007/978-3-319-64701-2\_22
- → West, J.C., Moore, T. (2022). Longitudinal Study of Internet-Facing OpenSSH Update Patterns. In: Hohlfeld, O., Moura, G., Pelsser, C. (eds) Passive and Active Measurement. PAM 2022. Lecture Notes in Computer Science, vol 13210. Springer, Cham. https://doi.org/10.1007/978-3-030-98785-5\_30
- → Neef, S. (2022). Source & result datasets for "Oh SSH-it, what's my fingerprint? A Large-Scale Analysis of SSH Host Key Fingerprint Verification Records in the DNS" [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6993096
- → https://www.openwall.com/lists/oss-security/2025/04/16/2
- → https://platform.sh/blog/uncovered-and-patched-golang-vunerability/
- → https://blog.qualys.com/vulnerabilities-threat-research/2025/02/18/qualys-tru-discovers-two-vulnerabilities-in-openssh-cve-2025-26465-cve-2025-26466
- → https://badkeys.info/ & https://github.com/badkeys/badkeys
- → https://github.com/runZeroInc/sshamble
- → https://github.com/runZeroInc/excrypto
- → https://sec.cloudapps.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-cucm-ssh-m4UBdpE7
- → https://github.com/atredispartners/flamingo/